
Using KAoS Policy and Domain Services within Cougaar

James Lott, Jeffrey M. Bradshaw, Andrzej Uszok, Renia Jeffers
Institute for Human and Machine Cognition (IHMC), 40 S. Alcaniz St., Pensacola, FL 32502 USA

{jlott, jbradshaw, auszok, rjeffer}@ihmc.us

Abstract

KAoS policy and domain management services allow
for the specification, management, conflict resolution,
and enforcement of policies represented in OWL within
contexts established by domains. We discuss the
application of KAoS services in providing policy
management for robustness and survivability in the
context of the DARPA UltraLog program, a large-scale
distributed agent-based system running on the Cougaar
agent infrastructure. Over the course of the program we
were able to demonstrate that a semantically-rich policy
system could provide exceptional performance and
responsiveness even under very demanding conditions.

1. Introduction

In 2000, the Defense Advanced Research Projects

Agency (DARPA) initiated the UltraLog program
(http://www.ultralog.net), a research effort focused on the
development of technologies to enhance the security and
robustness of large-scale, distributed agent-based systems
operating in chaotic wartime environments. The objective
of the UltraLog program is to create a comprehensive
capability that will enable trusted, distributed agent
infrastructure for operational logistics to be survivable
under the most extreme circumstances, including direct
attack and loss of significant pieces of system
infrastructure. The prototype application is a logistics
information system comprised of over a thousand agents
of medium complexity, running on the Cougaar agent
infrastructure.

In this paper, we discuss the application of KAoS
policy and domain management services to the problem
of policy-based control of security mechanisms in the
context of the UltraLog program.

2. KAoS Policy and Domain Services

KAoS services and tools allow for the specification,

management, conflict resolution, and enforcement of
policies within contexts established as domains [1; 2; 3; 7;
9] . While initially oriented to the dynamic and complex
requirements of software and robotic agent applications,
KAoS services have been extended to work equally well
with traditional clients on CORBA, Grid Computing, and
Web Services platforms [5; 8].

Policies are declarative constraints on system behavior
that provide a powerful means for dynamically regulating
the behavior of components without changing code nor
requiring the cooperation of the components being
governed (http://www.policy-workshop.org/) [1]. The
KAoS policy ontology distinguishes between
authorizations (i.e., constraints that permit or forbid some
action) and obligations (i.e., constraints that require some
action to be performed when a state- or event-based
trigger occurs, or else serve to waive such a requirement)
[4]. Other policy constructs (e.g., delegation, role-based
authorization) are built out of the basic primitives of
domains plus these four policy types.

The concept of action is central to the definition of
KAoS policy. Action is defined as ontological class used
to classify instances of action that are intended or
currently underway. If the action instance is of the action
class type associated with the given policy then this
policy is known to be applicable to the current situation.

The use of OWL enables reasoning about the
controlled environment, policy relations and disclosure,
policy conflict detection, and harmonization, as well as
about domain structure and concepts exploiting
description-logic-based subsumption and instance
classification algorithms and, if necessary, controlled
extensions to description logic (e.g., role-value maps). No
rules are used in policy representation—rather conditions
are expressed as property restrictions on actions
associated with the policy ontologies.

A comparison of KAoS, Rei, and Ponder approaches
to policy can be found in [6]. We highlight a few
important features below.

Homogeneous representation. Because all aspects of
KAoS representation are encoded purely in OWL, any
third-party tool or environment supporting OWL can
perform specialized analyses of the full knowledge base
with complete independence from KAoS itself, thus
easing integration with an increasingly sophisticated
range of new OWL tools and language enhancements in
the future.

Maturity. Over the past few years, KAoS has been
used in a wide variety of applications and operating
environments ranging from security for distributed
systems to management of distributed sensors to policy-
based interaction with software and robotic agents.

Comprehensiveness. Unlike many approaches that
deal with only simple forms of access control or
authorization, KAoS supports both authorization and
obligation policies. In addition, a complete infrastructure
for policy management has been implemented including a

full range of capabilities from sophisticated user
interfaces for policy specification and analysis to generic
policy enforcers. Facilities for policy enforcement
automation (i.e., automatic generation of code for
enforcers) are in development.

Pluggability. Platform-specific and application-
specific ontologies are easily loaded on top of the core
policy classes. Moreover, the policy enforcement
elements have been straightforwardly adapted to a wide
range of computing environments. The adaptability of
KAoS is due in large part to its pluggable infrastructure
based on Sun’s Java Agent Services (JAS;
http://java.agent.org). This allows KAoS to be easily
adapted to various agent computing environments (e.g.,
CORBA, Brahms, Cougaar, Web Services.) while
maintaining a common code base and core functionality.

3. KAoS Policy Management in Cougaar

For the UltraLog project, KAoS is packaged as a set of

Cougaar components, with extensions to allow use of the
Cougaar message transport service and persistence
mechanisms, as well as interfacing with Cougaar-specific
policy enforcement mechanisms (binders).

Figure 1. KAoS architecture in UltraLog

The KAoS architecture consists of the following

components (figure 1):

• The KAoS Policy Administration Tool (KPAT) and

associated servlet, providing a graphical user
interface to domain and policy management
functionality which is used to create and apply
policies;

• The Policy Manager Agent, with the following
plugins:

§ The KAoS Domain Manager (DM), which is

responsible for registering agents consistent
with policies on domain membership,
performing policy conflict resolution,
ensuring policy consistency at all levels of a
domain hierarchy, notifying Guards in the
event of a policy change, and storing
policies in a secure repository. 1 Groups of
people and computational entities are
logically structured into domains and
subdomains to facilitate policy
administration. Domains may represent any
sort of group imaginable, from potentially
complex organizational structures to
administrative units to dynamic task-
oriented teams with continually changing
membership. Membership in a given domain
can extend across host boundaries and,
conversely, multiple domains can exist
concurrently on the same host. Domains
may be nested indefinitely and, depending
on whether policy allows, membership in
more than one domain at a time is possible.
Domain membership may be defined
extensionally (i.e., through explicit
enumeration in a registry) or intentionally
(i.e., by virtue of some common property
such as a joint goal or a given place where
various entities may be currently located);

§ The Policy Applicability Condition Monitor
(aka Condition Monitor), which monitors
external conditions (e.g. Cougaar
OperatingModes) and proposes policies to
the Domain Manager to be added or
retracted consistent with pre-specified
applicability conditions;

§ The Policy Expander, which expands high-
level policies to a set of more finely grained
policies before they are distributed to the
Guard(s). Expansion is currently only useful
for a small number of hand-crafted XML
policies that are opaque to KAoS reasoning
methods; OWL policies are expanded within
the Domain Manager and sent directly to the
Guards.

§ The KAoS Guard, which interprets policies
that have been approved by the Domain
Manager and assures enforcement with
appropriate mechanisms, potentially
including Cougaar binders, Java access
control (JAAS), Nomads resource control,
and obligation policy monitors and enablers.

1 The DM currently delegates operational responsibility for some of
these functions to the KAoS directory service, which contains Stanford’s
Java Theorem Prover (JTP; see below).

Integration with Cougaar

 As mentioned previously, KAoS conforms to the Java
Agent Services specification, which allows it to more
easily interface with various agent architectures. For
Cougaar, we developed a JAS-compliant message
transport service layer which interacts with the Cougaar
BlackboardService and uses Relays to send and receive
messages. Furthermore, several KAoS components have
been extended to take advantage of other features of the
Cougaar architecture. The Guard is packaged as a
Cougaar Service, and policy enforcers obtain a reference
to it via the Cougaar ServiceBroker interfaces.
Furthurmore, the Guard makes use of the Cougaar
BlackboardService to provide persistence, storing the
current policy set as well as other state information on the
blackboard. Likewise, the KAoS Domain Manager is
packaged as a Cougaar Plugin, and also uses the
BlackboardService to provide persistence of policies,
agent registrations, and other state information. Other
KAoS components, such as the Condition Monitor and
Policy Expander, were developed specifically for the
UltraLog project and are implemented as Plugins.

Expressing Policies

The basic components of an authorization policy are

the actor(s), modality (positive (permitted) or negative
(forbidden)), action and properties relating to the action
(e.g., target of the action, conditions). A sample policy
would read as follows:

Actor(s) X is authorized to perform action(s) Y
on target(s) Z.

An obligation policy also has two possible modalities:
positive (required) or negative (not required). It also is
associated with a trigger condition:

When actor(s) A performs action(s) B on target(s) C,
then actor(s) X is obligated to perform action(s) Y on
target(s) Z.

Actors, actions, and targets map to various classes and
instances in the KAoS Policy Ontologies (KPO). For a
given application, one may wish to write policies which
refer to application-specific concepts. KAoS provides a
flexible architecture which allows the introduction of
application-specific concepts to the KPO. Concepts can
be introduced by loading application-specific ontologies,
or by registering concepts dynamically as they become
known.

For example, consider the following two policies
developed for the UltraLog program:

Members of CommunityX are authorized to
communicate with Members of CommunityY using
3DES encryption.

A user in role PolicyAdministrator is authorized to
access the servlet named PolicyManagementServlet.

In these examples, application-specific concepts such
as communities, encryption levels, user roles, and servlet
names have been introduced into the KPO. Note that these
policies (as well as other UltraLog policies) are in the
form of authorization policies, due to the nature of the
enforcement capabilities developed for the program. An
example of KAoS applications which use obligation
policies can be found in [10].

In many cases, application-specific concepts may refer
to dynamically changing data that does not lend itself well
to introduction in the KAoS ontologies. In this case, the
concept can be represented as a class in the ontology
without defining membership. Policies refer to the
concept’s class, and class membership of individual
instances is determined dynamically during policy
disclosure queries through the use of Instance Classifiers.
An Instance Classifier answers the question “Is instance x
a member of class y?”. Developers can write application-
specific instance classifiers and register them with the
Guard. The Guard then uses these classifiers when
evaluating policy disclosure queries.

As an example, consider the communication policy
above that refers to Cougaar communities. A community
is a dynamically changing set of agents. Rather than
constantly updating the definition of the community in the
KAoS ontologies, the community is registered as a class
(e.g. “CommunityX”) without defining membership. A
custom instance classifier for communities which
interfaces with the Cougaar CommunityService is then
registered with the Guard. When the Guard is called to
evaluate a policy which refers to members of a
community, it calls the instance classifier to ask “is the
specified agent a member of this community”, and uses
the result to help determine whether the policy is
applicable to the instance specified in the policy
disclosure request.

Policy Conflict Detection

Both authorization and obligation policies also have
another required component: priority. The priority of a
policy is used to indicate its precedence in relation to
other policies. Currently, priority is specified as an integer
value; future work will allow complex logical expressions
of policy precedence.

A policy is said to be directly in conflict with another
policy if it is of the same priority, with an overlapping
scope of actors, actions, and action context, but of
opposing modality (figure 2).

Figure 2. Three types of opposing modalities

Conflicting policies can be identified and, if desired,

harmonized through the use of algorithms that we have
implemented within Stanford’s Java Theorem Prover
(JTP; http://www.ksl.stanford.edu/software/JTP/).
Investigation of means to help users discover various
types of indirect policy conflicts is discussed in the
Current Work section of this paper.

Policy Enforcement

Each KAoS Guard maintains a local repository of the

current policies in force that are relevant to the actions or
actors is it managing, as received from the Domain
Manager. In this way, Guards can provide policy
reasoning capabilities for policy enforcers, removing the
burden of parsing and evaluating policies from the
enforcer developer. The independence of the Guards from
the Domain Manager, except at policy update time, allows
enforcement of policies to continue locally even when
communication with the DM may be temporarily
unavailable. The representation of policy within Guards is
in a simple look-up format that represents all the
necessary semantics of the OWL policies yet is optimized
for efficiency. The enforcer can perform various policy
disclosure queries on the Guard to determine whether to
allow an intercepted action to occur, asking questions
such as “Is this action allowed?”, “What are the allowed
values for this property of a given action?”, and “What
are the obligations for the given action?”. Thus the
enforcer developer does not need to be concerned with the
details of evaluating the applicability of policies, but can
rather focus on the implementation of the enforcement
capability itself.

Enforcers in Cougaar are in the form of Binders –
infrastructure-level components which control access to
infrastructure services. A number of enforcers (and
instance classifiers) for security services have been
developed with our collaborators at Cougaar Software,
Inc. These enforcers interact with the KAoS Guard to
check the authorization of intercepted actions. Enforcers
have been developed for various kinds of message
encryption and content filtering, servlet user access
control and authentication, blackboard access control, and

white pages (naming and lookup service) access control.
The Binder implementations were developed by our
Cougaar Software collaborators and the details of their
implementation are thus beyond the scope of this paper.

Policy Templates

To assist non-specialists in defining sensible policies

for a specific application, the KAoS Policy
Administration Tool (KPAT) supports both a generic
OWL policy editor, as well as policy templates tailored to
specific applications. A policy template is a custom GUI
used to create (and edit) a specific type of policy (or a set
of policies) (figure 3). It hides certain properties and
classes of the generic policy editor from users, presenting
them with an application-specific subset of policy-
relevant entities to choose from. Policy templates also
reduce the burden of developers, allowing a single high-
level policy to define multiple more-specific policies. For
example, a policy represented in a template that forbids A
communicating with B could be configured to generate
four policies which represent the full range of protection
intended by the policy developer: A being forbidden to
send to B, B being forbidden to send to A, A being
forbidden to receive from B, and B being forbidden to
receive from A.

Several policy templates have been developed for the
UltraLog program correlating with the specific
enforcement capabilities described in the previous
section. Currently, policy templates are implemented as
custom-built Java classes. We expect to finish in the near
future a graphical policy template editor that will allow a
user to create new templates using the KPAT GUI.

Performance in Large Societies

A critical issue in the application of KAoS to the

control of UltraLog security mechanisms was ensuring
that policy disclosure queries from enforcers can be
answered quickly enough as to not adversely affect the
performance of the system. With this objective in mind,
we optimized the policy disclosure methods such that
response to a query is provided on average in less than
1ms2. Furthermore, queries can be executed concurrently
by multiple enforcers, allowing KAoS to take advantage
of multi-processor machines.

Performance of the KAoS Domain Manager is heavily
dependent on the performance of the Java Theorem
Prover (JTP) which provides the inference capabilities.
Thus, assertions to the Domain Manager (e.g. policy
updates, agent registrations, loading new ontologies, etc.)
are bound by the performance of JTP. We have found that
performance is acceptable even in large societies of over a
thousand agents and hundreds of policies, where dynamic
policy updates can be committed, deconflicted, and

2 Tests were performed on a dual-processor Xeon machine with 2GB of
RAM running Linux

distributed in a matter of a few seconds. Further

enhancements to JTP (e.g., current work on general
“untell” mechanisms) and advances in computer hardware
will continue to improve this performance.

4. Current Work

In addition to the items already mentioned, current
work includes policy administration scoping, distribution
of knowledge among multiple policy managers, and user
support for discovery of specific kinds of indirect policy
conflicts.

Policy administration scoping will provide access
control on domain management functionality, so that only
authorized administrators will be able to view or modify
entities or policies of a given class or within a given
domain. Access control functionality will also be
extended to policy disclosure queries, so that policy
information is given only to those who have been
authorized.

We also plan to enhance the flexibility of the KAoS

architecture to allow policy managers to share full or
partial knowledge of policies and domain membership
with other policy managers, consistent with what is
permitted by knowledge disclosure policies. This will
enhance the scalability of the policy management
framework as well as providing redundancy in the policy
repositories and reasoning capabilities to eliminate single
point-of-failures.

Indirect policy conflict detection queries will be
provided to help an administrator discover policy
relationship information of interest. This will include, for
example, queries to determine whether some policies are
covered by other policies (even if they are not “in
conflict”). Covered policies are those policies that have
no effect because another policy covers the same (or
broader) scope of actions but has greater (or equal)
precedence. Another example would be in the case of
queries to discover whether an agent can still perform its
duties given the policies in effect. As an example of the
latter, we want to avoid situations where basic

Figure 3. Example KAoS policy template for UltraLog

functionality of the system is not compromised due to
overly restrictive policies put into force.

5. Conclusions

KAoS policy and domain management services have

proven to be an effective and flexible solution to the
dynamic control of security mechanisms in large-scale
distributed systems. The flexible architecture of KAoS
allows developers to extend the ontologies and plug in
new enforcement capabilities without requiring changes
to the policy management architecture itself, and without
requiring the developer to have extensive knowledge of
low-level reasoning and representation details. Policy
disclosure queries have been optimized to execute quickly
enough for real-time control of security mechanisms in a
society of over a thousand medium-complexity agents and
hundreds of policies. Moreover, the use of policy
templates enables non-specialists to exercise policy-based
control through the use of simple and easy-to-understand
GUIs. Further enhancements will increase the power and
convenience of these tools and capabilities.

6. Acknowledgements

This material is based on research sponsored by the

Defense Advanced Research Projects Agency (DARPA)
under agreement number F30602-00-2-0577. We
appreciate the support of other IHMC KAoS researchers
(Maggie Breedy, Larry Bunch, Paul Feltovich, Matt
Johnson, Hyuckchul Jung, Shri Kulkarni, Niranjan Suri,
William Taysom, Gianluca Tonti), as well as our sponsor
at DARPA, Mark Greaves, and our collaborators at
Cougaar Software (Richard Feiertag, Timothy Redmond,
Sue Rho, and Sebastien Rosset). The U.S. Government
and the Institute for Human and Machine Cognition are
authorized to reproduce and distribute reprints and on-line
copies of this paper and derivatives for their purposes
notwithstanding any copyright annotation hereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of other parties.

7. References

[1] Bradshaw, J. M., Beautement, P., Raj, A., Johnson,

M., Kulkarni, S., & Suri, N. (2004). Making agents
acceptable to people. In N. Zhong & J. Liu (Ed.),
Intelligent Technologies for Information Analysis:
Advances in Agents, Data Mining, and Statistical
Learning. (pp. 355-400). Berlin: Springer Verlag.

[2] Bradshaw, J. M., Jung, H., Kulkarni, S., & Taysom,
W. (2004). Dimensions of adjustable autonomy and
mixed-initiative interaction. In M. Klusch, G. Weiss,

& M. Rovatsos (Ed.), Computational Autonomy. (in
press). Berlin, Germany: Springer-Verlag.

[3] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N.,
Hayes, P., Burstein, M. H., Acquisti, A., Benyo, B.,
Breedy, M. R., Carvalho, M., Diller, D., Johnson, M.,
Kulkarni, S., Lott, J., Sierhuis, M., & Van Hoof, R.
(2003). Representation and reasoning for DAML-
based policy and domain services in KAoS and
Nomads. Proceedings of the Autonomous Agents and
Multi-Agent Systems Conference (AAMAS 2003).
Melbourne, Australia, New York, NY: ACM Press,

[4] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M.
S. (2000). Ponder: A Language for Specifying
Security and Management Policies for Distributed
Systems, Version 2.3. Imperial College of Science,
Technology and Medicine, Department of
Computing, 20 October 2000.

[5] Johnson, M., Chang, P., Jeffers, R., Bradshaw, J. M.,
Soo, V.-W., Breedy, M. R., Bunch, L., Kulkarni, S.,
Lott, J., Suri, N., & Uszok, A. (2003). KAoS
semantic policy and domain services: An application
of DAML to Web services-based grid architectures.
Proceedings of the AAMAS 03 Workshop on Web
Services and Agent-Based Engineering. Melbourne,
Australia,

[6] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R.,
Suri, N., & Uszok, A. (2003). Semantic Web
languages for policy representation and reasoning: A
comparison of KAoS, Rei, and Ponder. In D. Fensel,
K. Sycara, & J. Mylopoulos (Ed.), The Semantic
Web—ISWC 2003. Proceedings of the Second
International Semantic Web Conference, Sanibel
Island, Florida, USA, October 2003, LNCS 2870.
(pp. 419-437). Berlin: Springer.

[7] Uszok, A., Bradshaw, J. M., & Jeffers, R. (2004).
KAoS: A policy and domain services framework for
grid computing and semantic web services.
Proceedings of the Second International Conference
on Trust Management. Oxford, England,

[8] Uszok, A., Bradshaw, J. M., Jeffers, R., Johnson, M.,
Tate, A., Dalton, J., & Aitken, S. (2004). Policy and
contract management for semantic web services.
AAAI 2004 Spring Symposium Workshop on
Knowledge Representation and Ontology for
Autonomous Systems. Stanford University, CA,
AAAI Press. To appear in IEEE Intelligent Systems.

[9] Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N.,
Hayes, P., Breedy, M. R., Bunch, L., Johnson, M.,
Kulkarni, S., & Lott, J. (2003). KAoS policy and
domain services: Toward a description-logic
approach to policy representation, deconfliction, and
enforcement. Proceedings of Policy 2003. Como,
Italy,

